A Numerical Algorithm for Solving Stiff Ordinary Differential Equations
نویسندگان
چکیده
منابع مشابه
A Parallel Algorithm for Stiff Ordinary Differential Equations
The problem associated with the stiff ordinary differential equation (ODE) systems in parallel processing is that the calculus can not be started simultaneously on many processors with an explicit formula. The proposed algorithm is constructed for a special classes of stiff ODE, those of the form y'(t)=A(t)y(t)+g(t). It has a high efficiency in the implementation on a distributed memory multipr...
متن کاملA Class of Linearly Implicit Numerical Methods for Solving Stiff Ordinary Differential Equations
We introduce ABC-schemes, a new class of linearly implicit one-step methods for numerical integration of stiff ordinary differential equation systems. Formulas of ABC-schemes invoke the Jacobian of differential system similary to the methods of Rosenbrock type, but unlike the latter they include also the square of the Jacobian matrix.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Numerical Method For Solving Ricatti Differential Equations
By adding a suitable real function on both sides of the quadratic Riccati differential equation, we propose a weighted type of Adams-Bashforth rules for solving it, in which moments are used instead of the constant coefficients of Adams-Bashforth rules. Numerical results reveal that the proposed method is efficient and can be applied for other nonlinear problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2013
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2013/989381